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Structure-based ASCII Art

Xuemiao Xu∗ Linling Zhang† Tien-Tsin Wong‡

The Chinese University of Hong Kong

Figure 1: Structure-based ASCII art generated by our method (the input is “banquet” of Figure 18). Characters were chosen from the set of
95 printable ASCII characters.

Abstract

The wide availability and popularity of text-based communication
channels encourage the usage of ASCII art in representing im-
ages. Existing tone-based ASCII art generation methods lead to
halftone-like results and require high text resolution for display, as
higher text resolution offers more tone variety. This paper presents
a novel method to generate structure-based ASCII art that is cur-
rently mostly created by hand. It approximates the major line struc-
ture of the reference image content with the shape of characters.
Representing the unlimited image content with the extremely lim-
ited shapes and restrictive placement of characters makes this prob-
lem challenging. Most existing shape similarity metrics either fail
to address the misalignment in real-world scenarios, or are unable
to account for the differences in position, orientation and scaling.
Our key contribution is a novel alignment-insensitive shape sim-
ilarity (AISS) metric that tolerates misalignment of shapes while
accounting for the differences in position, orientation and scaling.
Together with the constrained deformation approach, we formulate
the ASCII art generation as an optimization that minimizes shape
dissimilarity and deformation. Convincing results and user study
are shown to demonstrate its effectiveness.
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1 Introduction

ASCII art is a technique of composing pictures with printable text
characters [Wikipedia 2009]. It stemmed from the inability of
graphical presentation on early computers. Hence text characters
are used in place of graphics. Even with the wide availability of
digital images and graphics nowadays, ASCII art remains popular
due to the enormous growth of text-based communication channels
over the Internet and mobile communication networks, such as in-
stant messenger systems, Usenet news, discussion forums, email
and short message services (SMS). In addition, ASCII art has al-
ready evolved into a popular art form in cyberspace.

ASCII art can be roughly divided into two major styles, tone-based
and structure-based. While tone-based ASCII art maintains the in-
tensity distribution of the reference image (Figure 2(b)), structure-
based ASCII art captures the major structure of the image con-
tent (Figure 2(c)). In general, tone-based ASCII art requires a
much higher text resolution to represent the same content than the
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(a) (b) (c)

Figure 2: ASCII art. (a) A reference image. (b) Tone-based ASCII
art generated by the program PicText, requiring the text resolution
30×29 in order to depict the content, though not very clearly. (c)
Structure-based ASCII art manually designed by an artist, with a
significant lower text resolution of 8×7.

structure-based one, as the high text resolution is required for pro-
ducing sufficient tone variety. On the other hand, structure-based
ASCII art utilizes the shape of characters to approximate the image
structure (Figure 2(c)), without mechanically following the pixel
values. To the extreme, smileys, such as :) and :(, are the sim-
plest examples of structure-based ASCII art.
Existing computational methods can only handle tone-based ASCII
art, as its generation can be regarded as a dithering problem with
characters [Ulichney ]. O’Grady and Rickard [2008] improved
such dithering process by reducing the mismatches bewteen char-
acter pixels and the reference image pixels. Nevertheless, high
text resolution is still required for a clear depiction. Note that
ASCII art gradually loses its stylishness (and approaches to stan-
dard halftone images) as its text resolution increases. In addition, as
the text screens of mobile devices are limited, the character-saving
structure-based ASCII art is more stylish and practical for commer-
cial usage such as text-based advertisement. However, satisfactory
structure-based ASCII art is mostly created by hand. The major
challenge is the inability to depict the unlimited image content with
the limited character shapes and the restrictive placement of char-
acters over the character grid.
To increase the chance of matching appropriate characters, artists
tolerate the misalignment between the characters and the reference
image structure (Figure 3(b)), and even intelligently deform the ref-
erence image (Figure 3(c)). In fact, shape matching in ASCII art ap-
plication is a general pattern recognition problem. In real-world ap-
plications, such as optical character recognition (OCR) and ASCII
art, we need a metric to tolerate misalignment and also account for
the differences in transformation (translation, orientation and scal-
ing). For instance, in recognizing the characters “o” and “o” during
the OCR, both scaling and translation count; while in recognizing
characters “6” and “9”, the orientation counts. Unfortunately, ex-
isting shape similarity metrics are either alignment-sensitive [Wang
et al. 2004] or transformation-invariant [Mori et al. 2005; Belongie
et al. 2002; Arkin et al. 1991], and hence not applicable.
In this paper, we propose a novel method to generate structure-
based ASCII art to capture the major structure of the reference im-
age. Inspired by the two matching strategies employed by ASCII
artists, our method matches characters based on a novel alignment-
insensitive shape similarity metric and allows a constrained defor-
mation of the reference image to increase the chance of character
matching. The proposed similarity metric tolerates the misalign-
ment while it accounts for the differences in transformation. Given
an input and a target text resolution, we formulate the ASCII art
generation as an optimization by minimizing the shape dissimilar-
ity and deformation. We demonstrate its effectiveness by several
convincing examples and a user study. Figure 1 shows the result
automatically obtained by our method.

(a) (c)(b)

Figure 3: (a) By inspecting the overlapping image between the edge
map of the reference image (Figure 2(a)) and the structured-based
ASCII art (Figure 2(c)), one can identify the two matching strate-
gies employed by ASCII artists: (b) misalignment is tolerated; (c)
the reference image is deformed to increase the chance of matching.

2 Related Work

As a culture in the cyberspace, the best references of ASCII
art can be found online. There is collaboratively pre-
pared frequently asked questions (FAQ) for Usenet newsgroup
alt.ascii-art [CJRandall 2003], which keeps track of the
update information and resources related to ASCII art. Other
sources of reference are online tutorials written by individual en-
thusiasts [Wakenshaw 2000; Crawford 1994; Au 1995]. To pro-
duce ASCII art, one can type it using a standard text editor. It is
not as intuitive as painting, however. Enthusiasts developed inter-
active painting software [Davis 1986; Gebhard 2009] to allow users
to directly paint the characters via a painting metaphor.

Besides the interactive tools, there are attempts to automatically
convert images into ASCII art [Klose and McIntosh 2000; De-
Fusco 2007; O’Grady and Rickard 2008]. However, they can only
generate tone-based ASCII art, as it can be regarded as a dither-
ing process. The major academic study is in the area of halfton-
ing [Ulichney ; Bayer 1973; Floyd and Steinberg 1974]. O’Grady
and Rickard [2008] tailor-made a method for tone-based ASCII art
by minimizing the difference between the characters and the refer-
ence image in a pixel-by-pixel manner. However, all these methods
cannot be extended to generate structure-based ASCII art due to
their inability to allow misalignment and deformation. In this pa-
per, we focus on the generation of structure-based ASCII art as it
depicts a clearer picture within a smaller text space. Its generation
can no longer be regarded as a dithering process. Instead, the shape
similarity plays a major role in its generation. 3D collage [Gal et al.
2007] relies on shape matching to aggregate smaller objects to form
a large compound one. While transformation invariance is needed
during collaging, our character matching must be transformation-
aware and with restrictive placement.

3 Overview

An overview of our structure-based ASCII art generation is shown
in Figure 4. The basic input is a vector graphics containing only
polylines. A raster image can be converted to vector via vector-
ization. As the limited shapes and restrictive placement of text
characters may not be able to represent unlimited image content,
ASCII artists slightly deform the input to increase the chance of
character matching. So we mimic such deformation during opti-
mization by iteratively adjusting the vertex positions of the input
polylines. Given the vector-based line art, we rasterize it and divide
the raster image into grid cells. Each cell is then best-matched with
a character based on the proposed alignment-insensitive shape sim-
ilarity metric (Section 4). This completes one iteration of optimiza-
tion, and the objective value, which composes of the deformation of
the vectorized picture (Section 5) and the dissimilarity between the
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Input Vectorized polylines
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matched characters
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Figure 4: The overview of our framework.
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Figure 5: Real-world applications, like OCR and ASCII art, require
a similarity metric to account for scaling, translation and orienta-
tion, as well as tolerate misalignment. (a) A scanned image for
OCR input. (b) Misalignment with ideal characters (in green) ex-
ists.

characters and the deformed picture, can be computed. In the next
iteration, we adjust the vertex positions of the vector-based line art
with a simulated annealing strategy (detailed in Section 5). Since
the line art is changed, the above rasterization-and-AISS-matching
process is repeated to obtain a new set of best-matched characters.
Such deformation-and-matching process continues until the objec-
tive value is minimized.
Before the optimization, we need to prepare the input and the
characters. Since character fonts may have varying thicknesses
and widths, we simplify the problem by ignoring font thickness
(via centerline extraction) and handling only fixed-width charac-
ter fonts. We further vectorize the characters and represent them
with polylines. In order to focus only on the shapes during match-
ing, both the input polylines and the characters are rasterized with
the same line thickness (one pixel-width in our system). Note that
the characters are only rasterized once as they can be repeatedly
used. Before each optimization step, the input polylines are raster-
ized according to the target text resolution, Rw × Rh, where Rw

and Rh are the maximum number of characters along the horizon-
tal and vertical directions respectively. As the aspect ratio of our
characters, α = Th/Tw , is fixed, the text resolution can be solely
determined by a single variable Rw , as Rh = dH/(αdW/Rwe)e,
where Tw and Th are the width and height of a rasterized character
image in the unit of pixels respectively. W and H are the width and
height of the input image. Hence, the input polylines are scaled and
rasterized to a domain of TwRw × ThRh. Furthermore, since the
vector-based input is scalable (W and H can be scaled up or down),
users may opt for allowing the system to determine the optimal text
resolution (Rw × Rh) by choosing the minimized objective values
among results of multiple resolutions, as our objective function is
normalized to the text resolution.

4 Alignment-Insensitive Shape Similarity

The key to best-match the content in a grid cell with a charac-
ter is the shape similarity metric. It should tolerate misalignment
and, simultaneously, account for the differences in transformation
such as, position, orientation and scaling. Existing shape similar-
ity metrics can be roughly classified into two extreme categories,
alignment-sensitive metrics and transformation-invariant metrics.

(a) (b) (c)

.

.

.

1

2

N

Figure 6: Alignment-insensitive shape similarity. (a) A log-polar
diagram to quantify the letter “A” with the corresponding histogram
underneath. Its row and column correspond to the angular and ra-
dial dimensions of the log-polar diagram respectively. (b) N points
are regularly sampled in a grid layout, each with a log-polar dia-
gram. (c) The corresponding log-polar histograms.

Peak signal-to-noise ratio (PSNR) or mean-squared error (MSE),
and the well-known structural similarity index (SSIM) [Wang et al.
2004] belong to the former category. Their similarity values drop
significantly when two equal images are slightly misaligned during
the comparison. On the other hand, the transformation-invariant
metrics are designed to be invariant to translation, orientation and
scaling. These metrics include shape context descriptor [Mori et al.
2005; Belongie et al. 2002], Fourier descriptor [Zahn and Roskies
1972], skeleton-based shape matching [Sundar et al. 2003; Goh
2008; Torsello and Hancock 2004], curvature-based shape match-
ing [Cohen et al. 1992; Milios 1989], and polygonal shape match-
ing [Arkin et al. 1991]. In our case, the transformation matters.
Hence, no existing work is suitable for our application.
In fact, the above metric requirement is not only dedicated to our
application, but applicable for real-world applications of pattern
recognition and image analysis, such as OCR. For example, Fig-
ure 5(a) shows a scanned image ready for OCR. The characters
“o”, “o”, “6” and “9” are magnified in Figure 5(b) for better visu-
alization. It is not surprising that the scanned character images (in
black) may be slightly misaligned to the ideal characters (in green)
no matter how perfect the global registration is. Hence, an align-
ment insensitive shape similarity metric is essential. Besides the
misalignment, the transformation difference has to be accounted for
in OCR as well. Characters “o” and “o” have the similar shapes, but
are different in position and scaling. Characters “9” and “6” also
share the same shape but with a difference in orientation. In other
words, the shape information alone is not sufficient for recognition,
since position, orientation and scaling have their own special mean-
ings. Therefore, the desired metric must also account for position,
orientation, scaling, as well as the shape information.

Misalignment Tolerance Misalignment is, in essence, a small-
scale transformation. To tolerate misalignment, a histogram of a
log-polar diagram [Mori et al. 2005] is used as the basic building
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block of our shape descriptor (Figure 6(a)). This log-polar his-
togram measures the shape feature in a local neighborhood, covered
by a log-polar window. Its bins uniformly partition the local neigh-
borhood in log-polar space. For each bin, the grayness of the shape
is accumulated and used as one component in the histogram. As
the bins are uniform in log-polar space, the histogram is more sen-
sitive to the positions of nearby points than to those farther away.
Moreover, since only the sum of pixels within the same bin is rele-
vant, it is inherently insensitive to small shape perturbations, which
leads to its misalignment tolerance nature. In other words, the de-
gree of misalignment tolerance is implicitly defined in the log-polar
diagram. During the pixel summation, black pixel has a grayness
of 1 while the white one is 0. The bin value h(k) of the k-th bin is
computed as h(k) =

∑

(q−p)∈bin(k)
I(q), where q is the position

of the current pixel; (q − p) is the relative position to the center
of the log-polar window, p; I(q) returns the grayness at position q.
The lower sub-image in Figure 6(a) visualizes the feature vector h
with respect to p (the blue dot).

Transformation Awareness Unlike the original transformation-
invariance scheme in [Mori et al. 2005], we propose a novel sam-
pling layout of log-polar diagrams in order to account for the trans-
formation difference. The log-polar histogram can natively account
for orientation. The bin values change as the content rotates. To ac-
count for scaling, all log-polar histograms share the same scale. To
account for translation (or position), N points are regularly sampled
over the image in a grid layout (Figure 6(b)). Both the reference
image in a cell and the character image are sampled with the same
sampling pattern. For each sample point, a log-polar histogram is
measured. The feature vectors (histograms) of the sample points are
then concatenated to describe the shape, as shown in Figure 6(c).
The shape similarity between two shapes, S and S′, is measured by
comparing their feature vectors in a point-by-point basis, given by

DAISS(S, S′) =
1

M

∑

i∈N

||hi − h
′
i||, (1)

where hi (h′
i) is the feature vector of the i-th sample point on S

(S′); M = (n+n′) is the normalization factor and n (n′) is the total
grayness of the shape S (S′). This normalization factor counteracts
the influence of absolute grayness.

In all the experiments, histograms were empirically constructed
with 5 bins along the radial axis in log space, and 12 bins along
the angular axis. The radius of the coverage is selected to be about
half of the shorter side of a character. The number of sample points,
N , equals (Tw/2) × (Th/2). To suppress aliasing due to the dis-
crete nature of bins, the image is filtered by a Gaussian kernel of
size 7×7 before measuring the shape feature.

Comparison to Existing Metrics We evaluate the metric by
comparing it to three commonly used metrics, including the classi-
cal shape context (a translation- and scale- invariant metric), SSIM
(an alignment-sensitive, structure similarity metric), and RMSE
(root mean squared error) after blurring. For the last metric, RMSE
is measured after blurring the compared images by a Gaussian ker-
nel of 7×7, as one may argue that our metric is similar to RMSE
after blurring the images.
The effectiveness of our metric is demonstrated in Figure 7, in
which we query four different shapes (the first column). For each
metric, the best-matched character is determined from a set of 95
printable ASCII characters. From the matching results, shape con-
text over-emphasizes the shape and ignores the position (as demon-
strated by queries 2 to 4). On the other hand, the alignment-
sensitive nature of SSIM and RMSE drives them to maximize the
overlapping area between the query image and the character, while

Query Our metric Shape context RMSE
(after  blurring)

SSIM

(1)

(2)

(3)

(4)

Figure 7: Comparison of four shape similarity metrics. From left to
right: our metric, shape context, SSIM, and RMSE-after-blurring.
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(a) Local deformation (b) Accessibility

B’

A’

Figure 8: Deformation metric

paying less attention to the shape (demonstrated by queries 1 and
3). In contrast, our method strives for a balance between shape and
position in all results. The query of a long center-aligned horizontal
line (query 4) demonstrates the advantage of our metric. Shape con-
text maximizes shape similarity, ignores large displacement, and
chooses the longer underscore character “ ” to match the long line.
SSIM and RMSE match the shape with an equal sign “=” because
its lower line overlaps with the query image. Our method pays at-
tention to the shape (a single line), tolerates a slight misalignment,
and chooses a shorter hyphen “-” as the best match.

5 Optimization

Deformation Metric To raise the chance of matching characters,
ASCII artists intelligently deform the reference image. We mimic
such deformation during our optimization. We deform the reference
image by adjusting the vertex positions of the vectorized polylines.
However, unconstrained deformation may destroy the global struc-
ture of the input. We designed a metric to quantify and minimize
the deformation values during the optimization process. This con-
sists of two terms, local deformation constraint and accessibility
constraint.

Local Deformation Constraint The first term measures the local de-

formation of a line segment, in terms of orientation and scaling.
Consider the original line segment AB as deformed to A′B′ in
Figure 8(a). As we allow global translation during the deformation,
the local deformation of line segment AB is measured in a relative
sense, as follows,

Dlocal(AB) = max {Vθ(AB), Vr(AB)} , (2)

where Vθ(AB) = exp(λ1θ), and

Vr(AB) = max

{

exp(λ2|r
′ − r|), exp

(

λ3 max{r, r′}

min{r, r′}

)}

,

θ ∈ [0, π] is the angle between the original and the deformed line
segments. r and r′ denote the lengths of the original and deformed
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(a) Iteration 0
=  695.76E

(b) Iteration 60
=  425.33E

(c) Iteration 120
=  375.32E

(d) Iteration 155
=  365.76E

Figure 10: Intermediate results during optimization. The input is Figure 18(s3).

(c)(b)(a)

Figure 9: The green and black lines indicate the original and de-
formed polylines respectively. The input is Figure 18(s3). (a) With
the local deformation constraint alone, the drift of circular windows
cannot be avoided. (b) With local and accessibility constraints, the
drift can be avoided. (c) Visualization of the deformation value of
each line segment in (b). For visualization purpose, the deformation
values are non-linearly mapped.

line segments. Parameters λ1, λ2, and λ3 are the weights, and em-
pirically set to values of 8/π, 2/ min{Tw, Th}, and 0.5, respec-
tively, in all the experiments. When there is no local deformation,
Dlocal = 1.

Accessibility Constraint The local deformation constraint alone
can only prevent the over-deformation in the local scale. It can-
not avoid the over-deformation in a global scale, as demonstrated
in Figure 9(a). Three circular windows drift away from their orig-
inal locations and destroy the layout, even though each of them is
not over-deformed in a local sense. To constrain the deformation
in a global scale, we propose a 2D accessibility constraint, inspired
by the surface exposure [Hsu and Wong 1995] and 3D accessibil-
ity [Miller 1994]. This maintains the relative orientation and posi-
tion between the current line segment and its surrounding line seg-
ments.

To compute the accessibility of the current line segment, say AB in
Figure 8(b), multiple rays are shot from the midpoint, P , of AB
towards the surrounding circle in order to determine the closest
surrounding line segments. For each intersected line segment, the
nearest point, Pi, is determined, forming an imaginary line segment
PPi. The accessibility is then computed as

Daccess(AB) =

nl
∑

i=1

wiDlocal(PPi), (3)

where nl is the total number of intersecting line segments to P .
Dlocal(PPi) is defined in Equation 2; wi is the weight, computed
as the normalized distance wi = |PPi|/(

∑nl

i=1
|PPi|). Its value is

higher when the corresponding line segment is closer to P . Hence,
the overall metric of controlling the deformation is,

Ddeform(AB) = max{Dlocal(AB), Daccess(AB)}, (4)

where Ddeform = 1 when there is no deformation. Figure 9(c) visu-
alizes Ddeform of the deformed image (Figure 9(b)) by color-coding
each line segment with lighter value indicating higher deformation,
and vice versa. As the objective function is computed on the ba-
sis of a character cell, the deformation value of a character cell j,
Dj

deform, is computed. All line segments intersecting the current
cell j are identified, as denoted by the set {Lj}. li is the length of
the i-th line segment Li (partial or whole) in {Lj} occupied by cell
j. Then, the deformation value of cell j is then computed as the
weighted average of deformation values of involved line segments,

D
j

deform
=

∑

i∈{Lj}

l̃iDdeform(Li), where l̃i =
li

∑

i∈{Lj}
li

. (5)

Objective Function With the shape similarity and deformation
metrics, the overall objective function can be defined. Given a par-
ticular text resolution, our optimization goal is to minimize the en-
ergy E,

E =
1

K

m
∑

j=1

Dj

AISS · Dj

deform, (6)

where m is the total number of character cells, and K is the num-
ber of non-empty cells, and is used as the normalization factor.
Dj

AISS is the dissimilarity between the j-th cell’s content and its
best-matched character, as defined in Equation 1. The term Dj

deform
is the deformation value of the j-th cell. When there is no deforma-
tion, Dj

deform = 1; hence E is purely dependent on Dj

AISS. Note
that the energy values of different text resolutions are directly com-
parable, as our energy function is normalized. The lower row of
Figure 12 demonstrates such comparability by showing our results
in three text resolutions along with their energies. The middle one
(28×21) with the smallest energy corresponds to the most pleas-
ant result, while the visually poor result on the left has a relatively
larger energy.

We employ a simulated annealing strategy during the discrete op-
timization. In each iteration, we randomly select one vertex, and
randomly displace its position with a distance of at most d. Here,
d is the length of the longer side of the character image. Then,
all affected grid cells due to this displacement are identified and
best-matched with the character set again. If the recomputed E
is reduced, the displacement is accepted. Otherwise, a transition
probability Pr = exp(−δ/t) is used to make the decision, where
δ is the energy difference between two iterations; t = 0.2tac0.997

is the temperature; c is the iteration index; ta is the initial average
matching error of all grid cells. If Pr is smaller than a random num-
ber in [0, 1], this displacement is accepted; otherwise, it is rejected.
The optimization is terminated whenever E is not reduced for co

consecutive iterations, where co = 5000 in our implementation.
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(a) shape context (c) RMSE after blurring (d) our metric(b) SSIMInput

Figure 11: Comparison of ASCII art using different shape similarity metrics.
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Figure 12: Our method vs. the method of O’Grady and Rickard. Rw is the width of the text resolution and E is the optimized energy.

Figure 10 shows the intermediate results along with their energies.
As the energy reduces, the visual quality of ASCII art improves ac-
cordingly. An animated sequence for better visualization of such
optimization is included in the auxiliary material.

6 Results and Discussions

To validate our method, we conducted multiple experiments over
a rich variety of inputs. The setting used for generating all our
examples in this paper and their running times are listed in Table 2.
Our method works with any font database of fixed character width.
This paper shows results of matching characters from ASCII code
(95 printable characters) and Shift-JIS code (475 characters only).
Figures 14 to 17 show our results. The corresponding inputs can
be found in Figure 18. Complete comparisons and results can be
found in the auxiliary material.

Metrics Comparison In Section 4, we have compared different
shape similarity metrics for matching a single character. One may
argue the visual importance of the proposed metric in generating
the entire ASCII art which may contain hundreds of characters.

To validate its importance, we compare the ASCII art results (Fig-
ure 11) generated by substituting the character matching metric in
our framework with different shape similarity metrics, including
shape context, SSIM, RMSE after blurring and our metric. Hence,
the same deformation mechanism is employed in generating all re-
sults. The result of shape context (Figure 11(a)) is most unrecog-
nizable due to the structure discontinuity caused by the neglect of
position. SSIM and RMSE preserve better structure as they place
a high priority on position. Their alignment-sensitive nature, how-
ever, leads to the loss of fine details. Among all results, our metric
generates the best approximation to the input, with the best preser-
vation of structure and fine details. The comparison demonstrates
the importance of transformation awareness and misalignment tol-
erance in preserving structure continuity and fine details.

Comparison to Existing Work Figure 2 already demonstrates
the inferiority of the more naı̈ve halftoning approach in represent-
ing clear structure. The only alternative work that was tailormade
for generating ASCII art is by O’Grady and Rickard [2008]. We
therefore compare our results to those generated by their method
in Figure 12(a). Due to its halftone nature, their method fails to
produce satisfactory (in terms of structure preservation) results for
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(c)  by our method(b) by artist(a) Input

Figure 13: Comparison of ASCII art between an artist’s and our method. Table 2: Timing statistics.
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Shift-JISc

24X37

24X38

25X36

9mins

9mins

9mins

66X61 ASCII 12mins

all three text resolutions (from 18×13 to 35×28). All fine details
are lost in their results.

User Study To conduct a user study, artists were invited to man-
ually design ASCII art pieces for 3 test images. They were free to
choose the desired text resolution for their pieces, but the charac-
ter set was restricted to ASCII code. We then use our method and
the method by O’Grady and Rickard to generate ASCII art results
with the same text resolutions. Then, we invited 30 participants for
the user study. The source image and three ASCII art results were
shown side-by-side to the participants. Figure 13 shows our result
as well as the artist piece from one of the 3 test sets. The complete
set of comparison can be found in the auxiliary material. Each par-
ticipant graded the ASCII art using 2 scores out of a 9-point scale
([1-9] with 9 being the best). The first score was to grade the simi-
larity of the ASCII art pieces with respect to the input. The second
was to grade the clarity of content presented in the ASCII art with-
out referring to the input. Therefore, there were 18 data samples
for analysis from each of the 30 participants. Altogether 540 data
samples can be used for analysis.

From the statistics in Table 1, the results by O’Grady and Rickard
are far from satisfactory in terms of both clarity and similarity. Our
method is comparable to (but slightly poorer than) the artist produc-
tion in terms of clarity. In terms of similarity, however, our method
produced better results than the artist’s production. Such a phe-
nomenon can be explained by that fact that artists can intelligently
(creatively) modify or even drop parts of content in order to facil-
itate the ASCII approximation (e.g. hairstyle of the girl in Figure
13(b)). In some cases, they even change the aspect ratio of the in-
put to facilitate character matching. On the other hand, our method
respects the input aspect ratio and content.

Animated ASCII Art Figure 17 shows the ASCII art results of
converting an animation to a sequence of ASCII art pieces. Al-
though each frame is converted independently without explicit
maintenance of temporal coherence, the generated ASCII art se-
quence is quite satisfactory. Readers are referred to the auxiliary
material for a side-by-side comparison between the original frames
and our generated ASCII art, in an animated fashion.

Timing Performance The proposed system was implemented
on a PC with 2GHz CPU, 8 GB system memory, and an nVidia
Geforce GTX 280 GPU with 1G video memory. Table 2 summa-
rizes the timing statistics of all examples shown in this paper. The

MeanMethods

Artists

Our method

O'Grady and Rickard

Standard
deviation

95% confidence interval

Lower Bound Upper Bound

Artists

Our method

O'Grady and Rickard

Similarity

Clarity

6.86

7.36

4.42

7.18

7.09

4.15

1.32

1.13

1.82

1.25

1.30

1.80

7.116.60

7.14

4.06

6.94

6.84

3.80

7.58

4.77

7.42

7.34

4.50

Table 1: User study statistics.

second, third, and fourth columns show the corresponding text res-
olution, the character set used, and the running time for generating
our ASCII art. The running time increases as the complexity of the
input and the number of the characters increase.

Limitations Besides the fact that traditional ASCII art only works
on a fixed-width font, modern ASCII art also deals with propor-
tional fonts, e.g. Japanese Shift-JIS. Our current method does not
handle proportional placement of characters or multiple font sizes
in a single ASCII art piece. Another limitation is that we currently
do not consider the temporal consistency when we generate the an-
imation of ASCII art. To achieve this, one could first establish the
correspondence between the shapes of the adjacent frames. Then
one could constrain the deformation along the temporal dimension
to achieve temporal consistency. Since our system only accepts
vector input, real photographs or other raster images must first be
converted into outline images. This could be done either by naı̈ve
edge detection or a sophisticated line art generation method such
as [Kang et al. 2007], followed by vectorization. This also means
that our results would be affected by the quality of the vectoriza-
tion. A poorly vectorized input containing messy edges would be
faithfully represented by our system. One more limitation stems
from the extremely limited variety of characters. Most font sets do
not contain characters representing a rich variety of slopes of lines.
This makes pictures such as radial patterns very hard to be faithfully
represented.

7 Conclusion

In this paper, we present a method that mimics how ASCII artists
generate structure-based ASCII art. To achieve this, we first pro-
pose a novel alignment-insensitive metric to account for position,
orientation, scaling and shape. We demonstrate its effectiveness in
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balancing shape and transformations, comparing it to existing met-
rics. This metric should also benefit other practical applications
requiring pattern recognition. Besides, a constrained deformation
model is designed to mimic how the artists deform the input image.
The rich variety of results shown demonstrates the effectiveness of
our method. Although we have shown an application of animated
ASCII art, its temporal consistency is not guaranteed. In the future,
it is worth investigating the possibility of generating animations of
ASCII art with high temporal consistency. An extension to propor-
tional placement of characters is also worth studying. To further
control and refine the result, it would also be beneficial to allow
users to interactively highlight the important structure in the input
for preservation during the deformation.
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Figure 15: ASCII art of “Golden Temple”

(a) Frame 1 (b) Frame 3 (c) Frame 6

Figure 17: Animation of “toitorse”

Figure 16: rain”ASCII art of “t

Figure 18:  Inputs of examples in this paper

(s2) “banquet” (s4) “Golden Temple” (s5) “train”

(s1) “dragon-man”

Figure 14: ASCII art of “dragon-man”

(s3) “church”
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